Notice

This is not the latest version of this item. The latest version can be found at:https://dspace.mit.edu/handle/1721.1/148375.2

Show simple item record

dc.contributor.authorKrinos, Arianna I.
dc.contributor.authorCohen, Natalie R.
dc.contributor.authorFollows, Michael J.
dc.contributor.authorAlexander, Harriet
dc.date.accessioned2023-03-06T18:40:15Z
dc.date.available2023-03-06T18:40:15Z
dc.date.issued2023-03-03
dc.identifier.urihttps://hdl.handle.net/1721.1/148375
dc.description.abstractAbstract Background Diverse communities of microbial eukaryotes in the global ocean provide a variety of essential ecosystem services, from primary production and carbon flow through trophic transfer to cooperation via symbioses. Increasingly, these communities are being understood through the lens of omics tools, which enable high-throughput processing of diverse communities. Metatranscriptomics offers an understanding of near real-time gene expression in microbial eukaryotic communities, providing a window into community metabolic activity. Results Here we present a workflow for eukaryotic metatranscriptome assembly, and validate the ability of the pipeline to recapitulate real and manufactured eukaryotic community-level expression data. We also include an open-source tool for simulating environmental metatranscriptomes for testing and validation purposes. We reanalyze previously published metatranscriptomic datasets using our metatranscriptome analysis approach. Conclusion We determined that a multi-assembler approach improves eukaryotic metatranscriptome assembly based on recapitulated taxonomic and functional annotations from an in-silico mock community. The systematic validation of metatranscriptome assembly and annotation methods provided here is a necessary step to assess the fidelity of our community composition measurements and functional content assignments from eukaryotic metatranscriptomes.en_US
dc.publisherBioMed Centralen_US
dc.relation.isversionofhttps://doi.org/10.1186/s12859-022-05121-yen_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titleReverse engineering environmental metatranscriptomes clarifies best practices for eukaryotic assemblyen_US
dc.typeArticleen_US
dc.identifier.citationBMC Bioinformatics. 2023 Mar 03;24(1):74en_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-03-05T04:08:33Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.date.submission2023-03-05T04:08:33Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

VersionItemDateSummary

*Selected version