MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification

Author(s)
Li, Qiaofeng; Chen, Huaibo; Koenig, Benjamin C; Deng, Sili
Thumbnail
DownloadPublished version (2.469Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution NonCommercial License 3.0 https://creativecommons.org/licenses/by-nc/3.0/
Metadata
Show full item record
Abstract
<jats:p>We develop Bayesian Chemical Reaction Neural Network (B-CRNN), a method to infer chemical reaction models and provide the associated uncertainty purely from data without prior knowledge of reaction templates.</jats:p>
Date issued
2023-02-01
URI
https://hdl.handle.net/1721.1/148449
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Physical Chemistry Chemical Physics
Publisher
Royal Society of Chemistry (RSC)
Citation
Li, Qiaofeng, Chen, Huaibo, Koenig, Benjamin C and Deng, Sili. 2023. "Bayesian chemical reaction neural network for autonomous kinetic uncertainty quantification." Physical Chemistry Chemical Physics, 25 (5).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.