MIT Libraries homeMIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Photochemical Runaway in Exoplanet Atmospheres: Implications for Biosignatures

Author(s)
Ranjan, Sukrit; Seager, Sara; Zhan, Zhuchang; Koll, Daniel DB; Bains, William; Petkowski, Janusz J; Huang, Jingcheng; Lin, Zifan; ... Show more Show less
Thumbnail
DownloadPublished version (1.410Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
About 2.5 billion years ago, microbes learned to harness plentiful solar energy to reduce CO2 with H2O, extracting energy and producing O2 as waste. O2 production from this metabolic process was so vigorous that it saturated its photochemical sinks, permitting it to reach “runaway” conditions and rapidly accumulate in the atmosphere despite its reactivity. Here we argue that O2 may not be unique: diverse gases produced by life may experience a “runaway” effect similar to O2. This runaway occurs because the ability of an atmosphere to photochemically cleanse itself of trace gases is generally finite. If produced at rates exceeding this finite limit, even reactive gases can rapidly accumulate to high concentrations and become potentially detectable. Planets orbiting smaller, cooler stars, such as the M dwarfs that are the prime targets for the James Webb Space Telescope (JWST), are especially favorable for runaway, due to their lower UV emission compared to higher-mass stars. As an illustrative case study, we show that on a habitable exoplanet with an H2–N2 atmosphere and net surface production of NH3 orbiting an M dwarf (the “Cold Haber World” scenario), the reactive biogenic gas NH3 can enter runaway, whereupon an increase in the surface production flux of one order of magnitude can increase NH3 concentrations by three orders of magnitude and render it detectable by JWST in just two transits. Our work on this and other gases suggests that diverse signs of life on exoplanets may be readily detectable at biochemically plausible production rates.
Date issued
2022
URI
https://hdl.handle.net/1721.1/148484
Department
Massachusetts Institute of Technology. Department of Earth, Atmospheric, and Planetary Sciences
Journal
Astrophysical Journal
Publisher
American Astronomical Society
Citation
Ranjan, Sukrit, Seager, Sara, Zhan, Zhuchang, Koll, Daniel DB, Bains, William et al. 2022. "Photochemical Runaway in Exoplanet Atmospheres: Implications for Biosignatures." Astrophysical Journal, 930 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries homeMIT Libraries logo

Find us on

Twitter Instagram YouTube

MIT Libraries navigation

SearchHours & locationsBorrow & requestResearch supportAbout us
PrivacyPermissionsAccessibility
MIT
Massachusetts Institute of Technology
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.