| dc.contributor.author | Burklund, Robert | |
| dc.contributor.author | Levy, Ishan | |
| dc.date.accessioned | 2023-03-13T12:06:46Z | |
| dc.date.available | 2023-03-13T12:06:46Z | |
| dc.date.issued | 2023-03-08 | |
| dc.identifier.uri | https://hdl.handle.net/1721.1/148491 | |
| dc.description.abstract | Abstract
We show that for a coconnective ring spectrum satisfying regularity and flatness assumptions, its algebraic K-theory agrees with that of its
$$\pi _0$$
π
0
. We prove this as a consequence of a more general devissage result for stable infinity categories. Applications of our result include giving general conditions under which K-theory preserves pushouts, generalizations of
$$\mathbb {A}^n$$
A
n
-invariance of K-theory, and an understanding of the K-theory of categories of unipotent local systems. | en_US |
| dc.publisher | Springer International Publishing | en_US |
| dc.relation.isversionof | https://doi.org/10.1007/s00029-023-00833-2 | en_US |
| dc.rights | Creative Commons Attribution | en_US |
| dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
| dc.source | Springer International Publishing | en_US |
| dc.title | On the K-theory of regular coconnective rings | en_US |
| dc.type | Article | en_US |
| dc.identifier.citation | Selecta Mathematica. 2023 Mar 08;29(2):28 | en_US |
| dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
| dc.identifier.mitlicense | PUBLISHER_CC | |
| dc.eprint.version | Final published version | en_US |
| dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
| eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
| dc.date.updated | 2023-03-12T04:11:50Z | |
| dc.language.rfc3066 | en | |
| dc.rights.holder | The Author(s) | |
| dspace.embargo.terms | N | |
| dspace.date.submission | 2023-03-12T04:11:50Z | |
| mit.license | PUBLISHER_CC | |
| mit.metadata.status | Authority Work and Publication Information Needed | en_US |