MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The crucial role of elasticity in regulating liquid–liquid phase separation in cells

Author(s)
Kothari, Mrityunjay; Cohen, Tal
Thumbnail
DownloadAccepted version (2.299Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Liquid-liquid phase separation has emerged as a fundamental mechanism underlying intracellular organization, with evidence for it being reported in numerous different systems. However, there is a growing concern regarding the lack of quantitative rigor in the techniques employed to study phase separation, and their ability to account for the complex nature of the cellular milieu, which affects key experimentally observable measures, such as the shape, size and transport dynamics of liquid droplets. Here, we bridge this gap by combining recent experimental data with theoretical predictions that capture the subtleties of nonlinear elasticity and fluid transport. We show that within a biologically accessible range of material parameters, phase separation is highly sensitive to elastic properties and can thus be used as a mechanical switch to rapidly transition between different states in cellular systems. Furthermore, we show that this active mechanically mediated mechanism can drive transport across cells at biologically relevant timescales and could play a crucial role in promoting spatial localization of condensates; whether cells exploit such mechanisms for transport of their constituents remains an open question.
Date issued
2022-12-24
URI
https://hdl.handle.net/1721.1/148532
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Biomechanics and Modeling in Mechanobiology
Publisher
Springer Science and Business Media LLC
Citation
Kothari, Mrityunjay and Cohen, Tal. 2022. "The crucial role of elasticity in regulating liquid–liquid phase separation in cells." Biomechanics and Modeling in Mechanobiology.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.