MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations

Author(s)
Florio, Giuseppe; Pugno, Nicola M; Buehler, Markus J; Puglisi, Giuseppe
Thumbnail
DownloadAccepted version (2.614Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
We propose a simple general framework to predict folding, native states, energy barriers, protein unfolding, as well as mutation induced diseases and other protein structural analyses. The model should not be considered as an alternative to classical approaches (Molecular Dynamics or Monte Carlo) because it neglects low scale details and rather focuses on global features of proteins and structural information. We aim at the description of phenomena that are out of the range of classical molecular modeling approaches due to the large computational cost: multimolecular interactions, cyclic behavior under variable external interactions, and similar. To demonstrate the effectiveness of the approach in a real case, we focus on the folding and unfolding behavior of tropoelastin and its mutations. Specifically, we derive a discrete mechanical model whose structure is deduced based on a coarse graining approach that allows us to group the amino acids sequence in a smaller number of `equivalent' masses. Nearest neighbor energy terms are then introduced to reproduce the interaction of such amino acid groups. Nearest and non-nearest neighbor energy terms, inter and intra functional blocks are phenomenologically added in the form of Morse potentials. As we show, the resulting system reproduces important properties of the folding-unfolding mechanical response, including the monotonic and cyclic force-elongation behavior, representing a physiologically important information for elastin. The comparison with the experimental behavior of mutated tropoelastin confirms the predictivity of the model. STATEMENT OF SIGNIFICANCE: Classical approaches to the study of phenomena at the molecular scale such as Molecular Dynamics (MD) represent an incredible tool to unveil mechanical and conformational properties of macromolecules, in particular for biological and medical applications. On the other hand, due to the computational cost, the time and spatial scales are limited. Focusing of the real case of tropoelastin, we propose a new approach based on a careful coarse graining of the system, able to describe the overall properties of the macromolecule and amenable of extension to larger scale effects (protein bundles, protein-protein interactions, cyclic loading). The comparison with tropoelastin behavior, also for mutations, is very promising.
Date issued
2021
URI
https://hdl.handle.net/1721.1/148566
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Acta Biomaterialia
Publisher
Elsevier BV
Citation
Florio, Giuseppe, Pugno, Nicola M, Buehler, Markus J and Puglisi, Giuseppe. 2021. "A coarse-grained mechanical model for folding and unfolding of tropoelastin with possible mutations." Acta Biomaterialia, 134.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.