MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model

Author(s)
Buehler, Markus J
Thumbnail
DownloadPublished version (1.595Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Dynamic fracture is an important area of materials analysis, assessing the atomic-level mechanisms by which materials fail over time. Here, we focus on brittle materials failure and show that an atomistically derived progressive transformer diffusion machine learning model can effectively describe the dynamics of fracture, capturing important aspects such as crack dynamics, instabilities, and initiation mechanisms. Trained on a small dataset of atomistic simulations, the model generalizes well and offers a rapid assessment of dynamic fracture mechanisms for complex geometries, expanding well beyond the original set of atomistic simulation results. Various validation cases, progressively more distinct from the data used for training, are presented and analyzed. The validation cases feature distinct geometric details, including microstructures generated by a generative neural network used here to identify novel bio-inspired material designs for mechanical performance. For all cases, the model performs well and captures key aspects of material failure.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148574
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Journal of Applied Mechanics
Publisher
ASME International
Citation
Buehler, Markus J. 2022. "Modeling Atomistic Dynamic Fracture Mechanisms Using a Progressive Transformer Diffusion Model." Journal of Applied Mechanics, 89 (12).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.