MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rate of atmospheric brown carbon whitening governed by environmental conditions

Author(s)
Schnitzler, Elijah G; Gerrebos, Nealan GA; Carter, Therese S; Huang, Yuanzhou; Heald, Colette L; Bertram, Allan K; Abbatt, Jonathan PD; ... Show more Show less
Thumbnail
DownloadPublished version (1.229Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
<jats:p>Biomass burning organic aerosol (BBOA) in the atmosphere contains many compounds that absorb solar radiation, called brown carbon (BrC). While BBOA is in the atmosphere, BrC can undergo reactions with oxidants such as ozone which decrease absorbance, or whiten. The effect of temperature and relative humidity (RH) on whitening has not been well constrained, leading to uncertainties when predicting the direct radiative effect of BrC on climate. Using an aerosol flow-tube reactor, we show that the whitening of BBOA by oxidation with ozone is strongly dependent on RH and temperature. Using a poke-flow technique, we show that the viscosity of BBOA also depends strongly on these conditions. The measured whitening rate of BrC is described well with the viscosity data, assuming that the whitening is due to oxidation occurring in the bulk of the BBOA, within a thin shell beneath the surface. Using our combined datasets, we developed a kinetic model of this whitening process, and we show that the lifetime of BrC is 1 d or less below ∼1 km in altitude in the atmosphere but is often much longer than 1 d above this altitude. Including this altitude dependence of the whitening rate in a chemical transport model causes a large change in the predicted warming effect of BBOA on climate. Overall, the results illustrate that RH and temperature need to be considered to understand the role of BBOA in the atmosphere.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/148579
Department
Massachusetts Institute of Technology. Department of Civil and Environmental Engineering
Journal
Proceedings of the National Academy of Sciences of the United States of America
Publisher
Proceedings of the National Academy of Sciences
Citation
Schnitzler, Elijah G, Gerrebos, Nealan GA, Carter, Therese S, Huang, Yuanzhou, Heald, Colette L et al. 2022. "Rate of atmospheric brown carbon whitening governed by environmental conditions." Proceedings of the National Academy of Sciences of the United States of America, 119 (38).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.