Show simple item record

dc.contributor.authorZhang, J
dc.contributor.authorUribe, CA
dc.contributor.authorMokhtari, A
dc.contributor.authorJadbabaie, A
dc.date.accessioned2023-03-17T16:05:25Z
dc.date.available2023-03-17T16:05:25Z
dc.date.issued2019-07-01
dc.identifier.urihttps://hdl.handle.net/1721.1/148596
dc.description.abstract© 2019 American Automatic Control Council. We develop a distributed algorithm for convex Empirical Risk Minimization, the problem of minimizing large but finite sum of convex functions over networks. The proposed algorithm is derived from directly discretizing the second-order heavy-ball differential equation and results in an accelerated convergence rate, i.e., faster than distributed gradient descent-based methods for strongly convex objectives that may not be smooth. Notably, we achieve acceleration without resorting to the well-known Nesterov's momentum approach. We provide numerical experiments and contrast the proposed method with recently proposed optimal distributed optimization algorithms.en_US
dc.language.isoen
dc.publisherIEEEen_US
dc.relation.isversionof10.23919/acc.2019.8814686en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceMIT web domainen_US
dc.titleAchieving acceleration in distributed optimization via direct discretization of the heavy-ball ODEen_US
dc.typeArticleen_US
dc.identifier.citationZhang, J, Uribe, CA, Mokhtari, A and Jadbabaie, A. 2019. "Achieving acceleration in distributed optimization via direct discretization of the heavy-ball ODE." Proceedings of the American Control Conference, 2019-July.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Civil and Environmental Engineeringen_US
dc.contributor.departmentMassachusetts Institute of Technology. Institute for Data, Systems, and Societyen_US
dc.relation.journalProceedings of the American Control Conferenceen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-03-17T15:57:55Z
dspace.orderedauthorsZhang, J; Uribe, CA; Mokhtari, A; Jadbabaie, Aen_US
dspace.date.submission2023-03-17T15:57:56Z
mit.journal.volume2019-Julyen_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record