Uniqueness of some cylindrical tangent cones to special Lagrangians
Author(s)
Collins, Tristan C.; Li, Yang
Download39_2023_Article_634.pdf (645.0Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Abstract
We show that if an exact special Lagrangian
$$N\subset {\mathbb {C}}^n$$
N
⊂
C
n
has a multiplicity one, cylindrical tangent cone of the form
$${\mathbb {R}}^{k}\times {\textbf{C}}$$
R
k
×
C
where
$${\textbf{C}}$$
C
is a special Lagrangian cone with smooth, connected link, then this tangent cone is unique provided
$${\textbf{C}}$$
C
satisfies an integrability condition. This applies, for example, when
$${\textbf{C}}= {\textbf{C}}_{HL}^{m}$$
C
=
C
HL
m
is the Harvey-Lawson
$$T^{m-1}$$
T
m
-
1
cone for
$$m\ne 8,9$$
m
≠
8
,
9
.
Date issued
2023-03-13Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Springer International Publishing
Citation
Collins, Tristan C. and Li, Yang. 2023. "Uniqueness of some cylindrical tangent cones to special Lagrangians."
Version: Final published version