MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex

Author(s)
Shain, Cory; Blank, Idan A; Fedorenko, Evelina; Gibson, Edward; Schuler, William
Thumbnail
DownloadPublished version (1.390Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution 4.0 International license https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
To understand language, we must infer structured meanings from real-time auditory or visual signals. Researchers have long focused on word-by-word structure building in working memory as a mechanism that might enable this feat. However, some have argued that language processing does not typically involve rich word-by-word structure building, and/or that apparent working memory effects are underlyingly driven by surprisal (how predictable a word is in context). Consistent with this alternative, some recent behavioral studies of naturalistic language processing that control for surprisal have not shown clear working memory effects. In this fMRI study, we investigate a range of theory-driven predictors of word-by-word working memory demand during naturalistic language comprehension in humans of both sexes under rigorous surprisal controls. In addition, we address a related debate about whether the working memory mechanisms involved in language comprehension are language-specialized or domain-general. To do so, in each participant, we functionally localize (a) the language-selective network and (b) the 'multiple demand' network, which supports working memory across domains. Results show robust surprisal-independent effects of memory demand in the language network and no effect of memory demand in the multiple demand network. Our findings thus support the view that language comprehension involves computationally demanding word-by-word structure building operations in working memory, in addition to any prediction-related mechanisms. Further, these memory operations appear to be primarily carried out by the same neural resources that store linguistic knowledge, with no evidence of involvement of brain regions known to support working memory across domains.SIGNIFICANCE STATEMENT:This study uses fMRI to investigate signatures of working memory (WM) demand during naturalistic story listening, using a broad range of theoretically motivated estimates of WM demand. Results support a strong effect of WM demand in the brain that is distinct from effects of word predictability. Further, these WM demands register primarily in language-selective regions, rather than in 'multiple demand' regions that have previously been associated with WM in non-linguistic domains. Our findings support a core role for WM in incremental language processing, using WM resources that are specialized for language.
Date issued
2022
URI
https://hdl.handle.net/1721.1/148771
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
Journal of Neuroscience
Publisher
Society for Neuroscience
Citation
Shain, Cory, Blank, Idan A, Fedorenko, Evelina, Gibson, Edward and Schuler, William. 2022. "Robust effects of working memory demand during naturalistic language comprehension in language-selective cortex." Journal of Neuroscience, 42 (39).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.