Show simple item record

dc.contributor.authorRajalingham, Rishi
dc.contributor.authorPiccato, Aída
dc.contributor.authorJazayeri, Mehrdad
dc.date.accessioned2023-03-28T16:45:50Z
dc.date.available2023-03-28T16:45:50Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/148822
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Primates can richly parse sensory inputs to infer latent information. This ability is hypothesized to rely on establishing mental models of the external world and running mental simulations of those models. However, evidence supporting this hypothesis is limited to behavioral models that do not emulate neural computations. Here, we test this hypothesis by directly comparing the behavior of primates (humans and monkeys) in a ball interception task to that of a large set of recurrent neural network (RNN) models with or without the capacity to dynamically track the underlying latent variables. Humans and monkeys exhibit similar behavioral patterns. This primate behavioral pattern is best captured by RNNs endowed with dynamic inference, consistent with the hypothesis that the primate brain uses dynamic inferences to support flexible physical predictions. Moreover, our work highlights a general strategy for using model neural systems to test computational hypotheses of higher brain function.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41467-022-33581-6en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleRecurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference tasken_US
dc.typeArticleen_US
dc.identifier.citationRajalingham, Rishi, Piccato, Aída and Jazayeri, Mehrdad. 2022. "Recurrent neural networks with explicit representation of dynamic latent variables can mimic behavioral patterns in a physical inference task." Nature Communications, 13 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-03-28T16:40:17Z
dspace.orderedauthorsRajalingham, R; Piccato, A; Jazayeri, Men_US
dspace.date.submission2023-03-28T16:40:19Z
mit.journal.volume13en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record