MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

CNNs reveal the computational implausibility of the expertise hypothesis

Author(s)
Kanwisher, Nancy; Gupta, Pranjul; Dobs, Katharina
Thumbnail
DownloadPublished version (1.199Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution-NonCommercial-NoDerivs License http://creativecommons.org/licenses/by-nc-nd/4.0/
Metadata
Show full item record
Abstract
Face perception has long served as a classic example of domain specificity of mind and brain. But an alternative "expertise" hypothesis holds that putatively face-specific mechanisms are actually domain-general, and can be recruited for the perception of other objects of expertise (e.g., cars for car experts). Here, we demonstrate the computational implausibility of this hypothesis: Neural network models optimized for generic object categorization provide a better foundation for expert fine-grained discrimination than do models optimized for face recognition.
Date issued
2023-02
URI
https://hdl.handle.net/1721.1/148824
Department
Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Journal
iScience
Publisher
Elsevier BV
Citation
Kanwisher, Nancy, Gupta, Pranjul and Dobs, Katharina. 2023. "CNNs reveal the computational implausibility of the expertise hypothesis." iScience, 26 (2).
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.