MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An Optimality Theory of Concurrency Control for Databases

Author(s)
Kung, Hsing-Tsung; Papadimitrou, Christos H.
Thumbnail
DownloadMIT-LCS-TM-185.pdf (3.143Mb)
Metadata
Show full item record
Abstract
A concurrency control mechanism (or a scheduler) is the component of a database system that safeguards the consistency of the database in the presence of interleaved accesses and update requests. We formally show that the performance of a scheduler, i.e. the amount of parallelism that it supports, depends explicitly upon the amount of information that is available to the scheduler. We point out that most previous work on concurrency control is simply concerned with specific points of this basic trade-off between performance and information. In fact, several of these approaches are shown to be optimal for the amount of information that they use.
Date issued
1980-11
URI
https://hdl.handle.net/1721.1/148996
Series/Report no.
MIT-LCS-TM-185

Collections
  • LCS Technical Memos (1974 - 2003)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.