MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Markov Chain Tree Theorem

Author(s)
Leighton, Frank Thomson; Rivest, Ronald L.
Thumbnail
DownloadMIT-LCS-TM-249.pdf (2.716Mb)
Metadata
Show full item record
Abstract
Let M be a finite first-order stationary Markov chain. We define an arborescence to be a set of edges in the directed graph for M having at most one edge out of every vertex, no cyles, and maximum cardinality. The weight of an arborescence is defined to be the product over each edge in the arborescence of the probability of the transition associated with the edge. We prove that if M starts in state i, its limiting average probability of being in state j is proportional to the sum of the weights of all arborescences having a path from i to j and no edge out of j. We present two proofs. The first is derived from simple graph theoretic identities. The second is derived from the closely-related Matrix Tree Theorem.
Date issued
1983-11
URI
https://hdl.handle.net/1721.1/149059
Series/Report no.
MIT-LCS-TM-249

Collections
  • LCS Technical Memos (1974 - 2003)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.