MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Memos (1974 - 2003)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Can Statistical Zero Knowledge be made Non-interactive? or On the Relationship of SZK and NISZK

Author(s)
Goldreich, Oded; Sahai, Amit; Vadhan, Salil
Thumbnail
DownloadMIT-LCS-TM-594.pdf (6.593Mb)
Metadata
Show full item record
Abstract
We extend the study of non-interactive statistical zero-knowledge proofs. Our main focus is to compare the class NISZK of problems possessing such non-interactive proofs to the class SZK of problems possessing interactive statistical zero-knowledge proofs. Along these lines, we first show that if statistical zero knowledge is non-trivial then so is non-interactive statistical zero knowledge, where by non-trivial we mean that the class includes problems which are not solvable in probabilistic polynommial-time. (The hypothesis holds under various assumptions, such as the intractability of the Discrete Logarithm Problem.) Furthermore, we show that if NISZK is closed under complement, then in fact SZK = NISZk, i.e. all statistical zero-knowledge proofs can be made non-interactive. The main tools in our analysis are two promise problems that are natural restrictions of promise problems known to be complete for SZK. We show that these restricted problems are in fact completer for NISZK and use this relationship to derive our results comparing the two classes. The two problems refer to the statistical difference, and difference in entropy, respectively, of a given distribution from the uniform one. We also consider a weak form of NISZK, in which only requires that for every inverse polynomial 1/p(n), there exists a simulator which achieves simulator deviation 1/p(n), and show that this weak form of NISZK actually equals NISZK.
Date issued
1999-09
URI
https://hdl.handle.net/1721.1/149287
Series/Report no.
MIT-LCS-TM-594

Collections
  • LCS Technical Memos (1974 - 2003)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.