MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Reports (1974 - 2003)
  • View Item
  • DSpace@MIT Home
  • Computer Science and Artificial Intelligence Lab (CSAIL)
  • LCS Publications
  • LCS Technical Reports (1974 - 2003)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automatic Recovery of Camera Positions in Urban Scenes

Author(s)
Antone, Matthew E.; Teller, Seth
Thumbnail
DownloadMIT-LCS-TR-814.pdf (16.49Mb)
Metadata
Show full item record
Abstract
Accurate camera calibration is crucial to the reconstruction of three-dimensional geometry and the recovery of photometric scene properties. Calibration involves the determination of intrinsic parameters (e.g. focal length, principal point, and radial lens distortion) and extrinsic parameters (orientation and position). In urban scenes and other environments containing sufficient geometric structure, it is possible to decouple extrinsic calibration into rotational and translational components that can be treated separately, simplifying the registration problem. Here we present such a decoupled formulation and describe methods for automatically recovering the positions of a large set of cameras given intrinsic calibration, relative rotations, and approximate positions. Our algorithm first estimates the directions of translation (up to an unknown scale factor) between adjacent camera pairs using point features but without requiring explicit correspondence between them. This technique combines the robustness and simplicity of a Hough transform with the accuracy of Monte Carlo expectation maximization. We then find a set of distances between the pairs that produces globally-consistent camera positions. Novel uncertainty formulations and match plausibility criteria improve reliability and accuracy. We assess our system's performance using both synthetic data and a large set of real panoramic imagery. The system produces camera positions accurate to within 5 centimeters in image networks extending over hundreds of meters.
Date issued
2000-12
URI
https://hdl.handle.net/1721.1/149917
Series/Report no.
MIT-LCS-TR-814

Collections
  • LCS Technical Reports (1974 - 2003)

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.