Show simple item record

dc.contributor.authorSanchez-Todo, Roser
dc.contributor.authorBastos, André M
dc.contributor.authorLopez-Sola, Edmundo
dc.contributor.authorMercadal, Borja
dc.contributor.authorSantarnecchi, Emiliano
dc.contributor.authorMiller, Earl K
dc.contributor.authorDeco, Gustavo
dc.contributor.authorRuffini, Giulio
dc.date.accessioned2023-03-30T17:28:55Z
dc.date.available2023-03-30T17:28:55Z
dc.date.issued2023-04
dc.identifier.urihttps://hdl.handle.net/1721.1/150022
dc.description.abstractCortical function emerges from the interactions of multi-scale networks that may be studied at a high level using neural mass models (NMM) that represent the mean activity of large numbers of neurons. Here, we provide first a new framework called laminar NMM, or LaNMM for short, where we combine conduction physics with NMMs to simulate electrophysiological measurements. Then, we employ this framework to infer the location of oscillatory generators from laminar-resolved data collected from the prefrontal cortex in the macaque monkey. We define a minimal model capable of generating coupled slow and fast oscillations, and we optimize LaNMM-specific parameters to fit multi-contact recordings. We rank the candidate models using an optimization function that evaluates the match between the functional connectivity (FC) of the model and data, where FC is defined by the covariance between bipolar voltage measurements at different cortical depths. The family of best solutions reproduces the FC of the observed electrophysiology by selecting locations of pyramidal cells and their synapses that result in the generation of fast activity at superficial layers and slow activity across most depths, in line with recent literature proposals. In closing, we discuss how this hybrid modeling framework can be more generally used to infer cortical circuitry.en_US
dc.language.isoen
dc.publisherElsevier BVen_US
dc.relation.isversionof10.1016/j.neuroimage.2023.119938en_US
dc.rightsCreative Commons Attribution-NonCommercial-NoDerivs Licenseen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/en_US
dc.sourceElsevieren_US
dc.titleA physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordingsen_US
dc.typeArticleen_US
dc.identifier.citationSanchez-Todo, Roser, Bastos, André M, Lopez-Sola, Edmundo, Mercadal, Borja, Santarnecchi, Emiliano et al. 2023. "A physical neural mass model framework for the analysis of oscillatory generators from laminar electrophysiological recordings." NeuroImage, 270.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalNeuroImageen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-03-30T17:18:28Z
dspace.orderedauthorsSanchez-Todo, R; Bastos, AM; Lopez-Sola, E; Mercadal, B; Santarnecchi, E; Miller, EK; Deco, G; Ruffini, Gen_US
dspace.date.submission2023-03-30T17:18:31Z
mit.journal.volume270en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record