dc.contributor.author | Kannan, Arun S. | |
dc.contributor.author | Wang, Zifan | |
dc.date.accessioned | 2023-04-03T12:00:03Z | |
dc.date.available | 2023-04-03T12:00:03Z | |
dc.date.issued | 2023-03-29 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/150331 | |
dc.description.abstract | Abstract
In this paper, we prove homological stability results about orthogonal groups over finite commutative rings where 2 is a unit. Inspired by Putman and Sam (2017), we construct a category OrI(R) and prove a local Noetherianity theorem for the category of OrI(R)-modules. This implies an asymptotic structure theorem for orthogonal groups. In addition, we show general homological stability theorems for orthogonal groups, with both untwisted and twisted coefficients. | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.isversionof | https://doi.org/10.1007/s10468-023-10202-4 | en_US |
dc.rights | Creative Commons Attribution | en_US |
dc.rights.uri | https://creativecommons.org/licenses/by/4.0/ | en_US |
dc.source | Springer Netherlands | en_US |
dc.title | Representation Stability and Finite Orthogonal Groups | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Kannan, Arun S. and Wang, Zifan. 2023. "Representation Stability and Finite Orthogonal Groups." | |
dc.contributor.department | Massachusetts Institute of Technology. Department of Mathematics | |
dc.identifier.mitlicense | PUBLISHER_CC | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | en_US |
eprint.status | http://purl.org/eprint/status/PeerReviewed | en_US |
dc.date.updated | 2023-04-03T04:58:59Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The Author(s) | |
dspace.embargo.terms | N | |
dspace.date.submission | 2023-04-03T04:58:59Z | |
mit.license | PUBLISHER_CC | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |