Show simple item record

dc.contributor.authorMedin, Safa C
dc.contributor.authorEgger, Bernhard
dc.contributor.authorCherian, Anoop
dc.contributor.authorWang, Ye
dc.contributor.authorTenenbaum, Joshua B
dc.contributor.authorLiu, Xiaoming
dc.contributor.authorMarks, Tim K
dc.date.accessioned2023-04-04T17:01:06Z
dc.date.available2023-04-04T17:01:06Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/150402
dc.description.abstract<jats:p>Recent advances in generative adversarial networks (GANs) have led to remarkable achievements in face image synthesis. While methods that use style-based GANs can generate strikingly photorealistic face images, it is often difficult to control the characteristics of the generated faces in a meaningful and disentangled way. Prior approaches aim to achieve such semantic control and disentanglement within the latent space of a previously trained GAN. In contrast, we propose a framework that a priori models physical attributes of the face such as 3D shape, albedo, pose, and lighting explicitly, thus providing disentanglement by design. Our method, MOST-GAN, integrates the expressive power and photorealism of style-based GANs with the physical disentanglement and flexibility of nonlinear 3D morphable models, which we couple with a state-of-the-art 2D hair manipulation network. MOST-GAN achieves photorealistic manipulation of portrait images with fully disentangled 3D control over their physical attributes, enabling extreme manipulation of lighting, facial expression, and pose variations up to full profile view.</jats:p>en_US
dc.language.isoen
dc.publisherAssociation for the Advancement of Artificial Intelligence (AAAI)en_US
dc.relation.isversionof10.1609/AAAI.V36I2.20091en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleMOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulationen_US
dc.typeArticleen_US
dc.identifier.citationMedin, Safa C, Egger, Bernhard, Cherian, Anoop, Wang, Ye, Tenenbaum, Joshua B et al. 2022. "MOST-GAN: 3D Morphable StyleGAN for Disentangled Face Image Manipulation." Proceedings of the AAAI Conference on Artificial Intelligence, 36 (2).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Brain and Cognitive Sciencesen_US
dc.relation.journalProceedings of the AAAI Conference on Artificial Intelligenceen_US
dc.eprint.versionOriginal manuscripten_US
dc.type.urihttp://purl.org/eprint/type/ConferencePaperen_US
eprint.statushttp://purl.org/eprint/status/NonPeerRevieweden_US
dc.date.updated2023-04-04T16:55:54Z
dspace.orderedauthorsMedin, SC; Egger, B; Cherian, A; Wang, Y; Tenenbaum, JB; Liu, X; Marks, TKen_US
dspace.date.submission2023-04-04T16:56:35Z
mit.journal.volume36en_US
mit.journal.issue2en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record