MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration

Author(s)
Foo, Zi Hao; Rehman, Danyal; Bouma, Andrew T; Monsalvo, Sebastian; Lienhard, John H
Thumbnail
DownloadAccepted version (18.85Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike https://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.
Date issued
2023-04-07
URI
https://hdl.handle.net/1721.1/150571
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Environmental Science & Technology
Publisher
American Chemical Society (ACS)
Citation
Foo, Zi Hao, Rehman, Danyal, Bouma, Andrew T, Monsalvo, Sebastian and Lienhard, John H. 2023. "Lithium Concentration from Salt-Lake Brine by Donnan-Enhanced Nanofiltration." Environmental Science & Technology.
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.