MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Comparative Study of Grid Frequency Stability Using Flywheel-Based Variable-Speed Drive and Energy Capacitor System

Author(s)
Okedu, Kenneth E.; Kalam, Akhtar
Thumbnail
Downloadenergies-16-03515.pdf (3.377Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Recently, there has been a rise in the integration of renewable energy sources into power grids. As a result of this, there is a need to carry out new studies in order to understand the dynamics of power grids during disturbances that is mainly caused by the stochastic nature of wind energy. The operation of modern power grids that are tied to wind farms follows a stipulated grid requirement or grid codes, considering the allowable threshold frequency variation during grid dynamics. This paper presents a comparative study of two frequency control schemes considering grid frequency stability using two frequency control topologies. A novel dynamic flywheel scheme with a doubly fed induction generator (DFIG) variable-speed wind turbine with the coordinated control of excess kinetic energy and mechanical torque during operation was the first scheme, and a control strategy of an energy capacitor system (ECS) with a squirrel cage induction generator fixed-speed wind turbine (FSWT) was the second scheme. The salient part of this study was that the DFIG maximum point power tracking for effective smoothing of the output of the wind generator in the first scheme was designed based on the control strategy of its reference power to achieve smoothing of the wind power at the terminals of the wind generator. The model system employed in this work was a wind farm that is tied to a conventional power grid made of steam and hydro synchronous turbines. For an effective and fair comparison of results, the same natural wind speed was used in PSCAD/EMTDC for both schemes. When no control, Scheme 1, and Scheme 2 were implemented, the frequency dips were 47.20, 49.99, and 49.99 Hz with overshoots of 50.500, 50.005, and 50.001 Hz and recovery times of over 600.00, 0.01, 0.01 s, respectively, for the frequency variable.
Date issued
2023-04-18
URI
https://hdl.handle.net/1721.1/150606
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Energies 16 (8): 3515 (2023)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.