MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Transfer Matrices of Rational Spin Chains via Novel BGG-Type Resolutions

Author(s)
Frassek, Rouven; Karpov, Ivan; Tsymbaliuk, Alexander
Thumbnail
Download220_2022_4620_ReferencePDF.pdf (1.297Mb)
Publisher Policy

Publisher Policy

Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.

Terms of use
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.
Metadata
Show full item record
Abstract
Abstract We obtain BGG-type formulas for transfer matrices of irreducible finite-dimensional representations of the classical Lie algebras $${\mathfrak {g}}$$ g , whose highest weight is a multiple of a fundamental one and which can be lifted to the representations over the Yangian $$Y({\mathfrak {g}})$$ Y ( g ) . These transfer matrices are expressed in terms of transfer matrices of certain infinite-dimensional highest weight representations (such as parabolic Verma modules and their generalizations) in the auxiliary space. We further factorise the corresponding infinite-dimensional transfer matrices into the products of two Baxter Q-operators, arising from our previous study Frassek et al. (Adv. Math. 401:108283, 2022), Frassek and Tsymbaliuk (Commun. Math. Phys. 392:545–619, 2022) of the degenerate Lax matrices. Our approach is crucially based on the new BGG-type resolutions of the finite-dimensional $${\mathfrak {g}}$$ g -modules, which naturally arise geometrically as the restricted duals of the Cousin complexes of relative local cohomology groups of ample line bundles on the partial flag variety G/P stratified by $$B_{-}$$ B - -orbits.
Date issued
2023-02-10
URI
https://hdl.handle.net/1721.1/150612
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Frassek, Rouven, Karpov, Ivan and Tsymbaliuk, Alexander. 2023. "Transfer Matrices of Rational Spin Chains via Novel BGG-Type Resolutions."
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.