MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Deep Generative Models in Engineering Design: A Review

Author(s)
Regenwetter, Lyle; Nobari, Amin Heyrani; Ahmed, Faez
Thumbnail
DownloadAccepted version (4.373Mb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike https://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title><jats:p>Automated design synthesis has the potential to revolutionize the modern engineering design process and improve access to highly optimized and customized products across countless industries. Successfully adapting generative machine learning to design engineering may enable such automated design synthesis and is a research subject of great importance. We present a review and analysis of deep generative machine learning models in engineering design. Deep generative models (DGMs) typically leverage deep networks to learn from an input dataset and synthesize new designs. Recently, DGMs such as feedforward neural networks (NNs), generative adversarial networks (GANs), variational autoencoders (VAEs), and certain deep reinforcement learning (DRL) frameworks have shown promising results in design applications like structural optimization, materials design, and shape synthesis. The prevalence of DGMs in engineering design has skyrocketed since 2016. Anticipating the continued growth, we conduct a review of recent advances to benefit researchers interested in DGMs for design. We structure our review as an exposition of the algorithms, datasets, representation methods, and applications commonly used in the current literature. In particular, we discuss key works that have introduced new techniques and methods in DGMs, successfully applied DGMs to a design-related domain, or directly supported the development of DGMs through datasets or auxiliary methods. We further identify key challenges and limitations currently seen in DGMs across design fields, such as design creativity, handling constraints and objectives, and modeling both form and functional performance simultaneously. In our discussion, we identify possible solution pathways as key areas on which to target the future work.</jats:p>
Date issued
2022
URI
https://hdl.handle.net/1721.1/150666
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Journal of Mechanical Design
Publisher
ASME International
Citation
Regenwetter, Lyle, Nobari, Amin Heyrani and Ahmed, Faez. 2022. "Deep Generative Models in Engineering Design: A Review." Journal of Mechanical Design, 144 (7).
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.