Show simple item record

dc.contributor.authorZhang, Qihang
dc.contributor.authorGamekkanda, Janaka C
dc.contributor.authorPandit, Ajinkya
dc.contributor.authorTang, Wenlong
dc.contributor.authorPapageorgiou, Charles
dc.contributor.authorMitchell, Chris
dc.contributor.authorYang, Yihui
dc.contributor.authorSchwaerzler, Michael
dc.contributor.authorOyetunde, Tolutola
dc.contributor.authorBraatz, Richard D
dc.contributor.authorMyerson, Allan S
dc.contributor.authorBarbastathis, George
dc.date.accessioned2023-05-19T13:34:24Z
dc.date.available2023-05-19T13:34:24Z
dc.date.issued2023-03-01
dc.identifier.urihttps://hdl.handle.net/1721.1/150777
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>Extracting quantitative information about highly scattering surfaces from an imaging system is challenging because the phase of the scattered light undergoes multiple folds upon propagation, resulting in complex speckle patterns. One specific application is the drying of wet powders in the pharmaceutical industry, where quantifying the particle size distribution (PSD) is of particular interest. A non-invasive and real-time monitoring probe in the drying process is required, but there is no suitable candidate for this purpose. In this report, we develop a theoretical relationship from the PSD to the speckle image and describe a physics-enhanced autocorrelation-based estimator (PEACE) machine learning algorithm for speckle analysis to measure the PSD of a powder surface. This method solves both the forward and inverse problems together and enjoys increased interpretability, since the machine learning approximator is regularized by the physical law.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/s41467-023-36816-2en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleExtracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE)en_US
dc.typeArticleen_US
dc.identifier.citationZhang, Qihang, Gamekkanda, Janaka C, Pandit, Ajinkya, Tang, Wenlong, Papageorgiou, Charles et al. 2023. "Extracting particle size distribution from laser speckle with a physics-enhanced autocorrelation-based estimator (PEACE)." Nature Communications, 14 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalNature Communicationsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-05-19T13:31:48Z
dspace.orderedauthorsZhang, Q; Gamekkanda, JC; Pandit, A; Tang, W; Papageorgiou, C; Mitchell, C; Yang, Y; Schwaerzler, M; Oyetunde, T; Braatz, RD; Myerson, AS; Barbastathis, Gen_US
dspace.date.submission2023-05-19T13:31:51Z
mit.journal.volume14en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record