Show simple item record

dc.contributor.authorNaik, Richa Ramesh
dc.contributor.authorTiihonen, Armi
dc.contributor.authorThapa, Janak
dc.contributor.authorBatali, Clio
dc.contributor.authorLiu, Zhe
dc.contributor.authorSun, Shijing
dc.contributor.authorBuonassisi, Tonio
dc.date.accessioned2023-05-24T18:52:36Z
dc.date.available2023-05-24T18:52:36Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/150809
dc.description.abstract<jats:title>Abstract</jats:title><jats:p>While machine learning (ML) in experimental research has demonstrated impressive predictive capabilities, extracting fungible knowledge representations from experimental data remains an elusive task. In this manuscript, we use ML to infer the underlying differential equation (DE) from experimental data of degrading organic-inorganic methylammonium lead iodide (MAPI) perovskite thin films under environmental stressors (elevated temperature, humidity, and light). Using a sparse regression algorithm, we find that the underlying DE governing MAPI degradation across a broad temperature range of 35 to 85 °C is described minimally by a second-order polynomial. This DE corresponds to the Verhulst logistic function, which describes reaction kinetics analogous to self-propagating reactions. We examine the robustness of our conclusions to experimental variance and Gaussian noise and describe the experimental limits within which this methodology can be applied. Our study highlights the promise and challenges associated with ML-aided scientific discovery by demonstrating its application in experimental chemical and materials systems.</jats:p>en_US
dc.language.isoen
dc.publisherSpringer Science and Business Media LLCen_US
dc.relation.isversionof10.1038/S41524-022-00751-5en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceNatureen_US
dc.titleDiscovering equations that govern experimental materials stability under environmental stress using scientific machine learningen_US
dc.typeArticleen_US
dc.identifier.citationNaik, Richa Ramesh, Tiihonen, Armi, Thapa, Janak, Batali, Clio, Liu, Zhe et al. 2022. "Discovering equations that govern experimental materials stability under environmental stress using scientific machine learning." npj Computational Materials, 8 (1).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalnpj Computational Materialsen_US
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-05-24T18:50:29Z
dspace.orderedauthorsNaik, RR; Tiihonen, A; Thapa, J; Batali, C; Liu, Z; Sun, S; Buonassisi, Ten_US
dspace.date.submission2023-05-24T18:50:30Z
mit.journal.volume8en_US
mit.journal.issue1en_US
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record