Show simple item record

dc.contributor.authorSiemenn, Alexander E
dc.contributor.authorShaulsky, Evyatar
dc.contributor.authorBeveridge, Matthew
dc.contributor.authorBuonassisi, Tonio
dc.contributor.authorHashmi, Sara M
dc.contributor.authorDrori, Iddo
dc.date.accessioned2023-05-25T15:34:39Z
dc.date.available2023-05-25T15:34:39Z
dc.date.issued2022
dc.identifier.urihttps://hdl.handle.net/1721.1/150812
dc.description.abstractGenerating droplets from a continuous stream of fluid requires precise tuning of a device to find optimized control parameter conditions. It is analytically intractable to compute the necessary control parameter values of a droplet-generating device that produces optimized droplets. Furthermore, as the length scale of the fluid flow changes, the formation physics and optimized conditions that induce flow decomposition into droplets also change. Hence, a single proportional integral derivative controller is too inflexible to optimize devices of different length scales or different control parameters, while classification machine learning techniques take days to train and require millions of droplet images. Therefore, the question is posed, can a single method be created that universally optimizes multiple length-scale droplets using only a few data points and is faster than previous approaches? In this paper, a Bayesian optimization and computer vision feedback loop is designed to quickly and reliably discover the control parameter values that generate optimized droplets within different length-scale devices. This method is demonstrated to converge on optimum parameter values using 60 images in only 2.3 h, 30× faster than previous approaches. Model implementation is demonstrated for two different length-scale devices: a milliscale inkjet device and a microfluidics device.en_US
dc.language.isoen
dc.publisherAmerican Chemical Society (ACS)en_US
dc.relation.isversionof10.1021/ACSAMI.1C19276en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourcearXiven_US
dc.titleA Machine Learning and Computer Vision Approach to Rapidly Optimize Multiscale Droplet Generationen_US
dc.typeArticleen_US
dc.identifier.citationSiemenn, Alexander E, Shaulsky, Evyatar, Beveridge, Matthew, Buonassisi, Tonio, Hashmi, Sara M et al. 2022. "A Machine Learning and Computer Vision Approach to Rapidly Optimize Multiscale Droplet Generation." ACS Applied Materials & Interfaces, 14 (3).
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mechanical Engineeringen_US
dc.relation.journalACS Applied Materials & Interfacesen_US
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-05-25T15:32:33Z
dspace.orderedauthorsSiemenn, AE; Shaulsky, E; Beveridge, M; Buonassisi, T; Hashmi, SM; Drori, Ien_US
dspace.date.submission2023-05-25T15:32:45Z
mit.journal.volume14en_US
mit.journal.issue3en_US
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record