Show simple item record

dc.contributor.authorChowdhury, Zawad
dc.contributor.authorEverett, Samuel
dc.contributor.authorFreedman, Sam
dc.contributor.authorLee, Destine
dc.date.accessioned2023-05-26T13:48:15Z
dc.date.available2023-05-26T13:48:15Z
dc.date.issued2023-05-22
dc.identifier.urihttps://hdl.handle.net/1721.1/150816
dc.description.abstractAbstract A non-square-tiled Veech surface has finitely many periodic points, i.e. points with finite orbit under the affine automorphism group. We present an algorithm that inputs a non-square-tiled Veech surface and outputs its set of periodic points. Our algorithm serves as a new proof of the finiteness of periodic points for non-square-tiled Veech surfaces. We apply our algorithm to Prym eigenforms in the minimal stratum in genus 3, proving that in low discriminant these surfaces do not have periodic points, except for the fixed points of the Prym involution.en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10711-023-00804-zen_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer Netherlandsen_US
dc.titleComputing periodic points on Veech surfacesen_US
dc.typeArticleen_US
dc.identifier.citationGeometriae Dedicata. 2023 May 22;217(4):66en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-05-23T03:34:08Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Nature B.V.
dspace.embargo.termsY
dspace.date.submission2023-05-23T03:34:08Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record