Show simple item record

dc.contributor.authorAlfonso, K.
dc.contributor.authorArmatol, A.
dc.contributor.authorAugier, C.
dc.contributor.authorAvignone, F. T.
dc.contributor.authorAzzolini, O.
dc.contributor.authorBalata, M.
dc.contributor.authorBarabash, A. S.
dc.contributor.authorBari, G.
dc.contributor.authorBarresi, A.
dc.contributor.authorBaudin, D.
dc.contributor.authorBellini, F.
dc.contributor.authorBenato, G.
dc.contributor.authorBeretta, M.
dc.contributor.authorBettelli, M.
dc.contributor.authorBiassoni, M.
dc.date.accessioned2023-06-20T17:44:20Z
dc.date.available2023-06-20T17:44:20Z
dc.date.issued2022-11-29
dc.identifier.urihttps://hdl.handle.net/1721.1/150918
dc.description.abstractAbstract CUPID is a next-generation tonne-scale bolometric neutrinoless double beta decay experiment that will probe the Majorana nature of neutrinos and discover lepton number violation in case of observation of this singular process. CUPID will be built on experience, expertise and lessons learned in CUORE and will be installed in the current CUORE infra-structure in the Gran Sasso underground laboratory. The CUPID detector technology, successfully tested in the CUPID-Mo experiment, is based on scintillating bolometers of Li $$_2$$ 2 MoO $$_4$$ 4 enriched in the isotope of interest $$^{100}$$ 100 Mo. In order to achieve its ambitious science goals, the CUPID collaboration aims to reduce the backgrounds in the region of interest by a factor 100 with respect to CUORE. This performance will be achieved by introducing the high efficient $$\alpha$$ α / $$\beta$$ β discrimination demonstrated by the CUPID-0 and CUPID-Mo experiments, and using a high transition energy double beta decay nucleus such as $$^{100}$$ 100 Mo to minimize the impact of the gamma background. CUPID will consist of about 1500 hybrid heat-light detectors for a total isotope mass of 250 kg. The CUPID scientific reach is supported by a detailed and safe background model based on CUORE, CUPID-Mo and CUPID-0 results. The required performances have already been demonstrated and will be presented.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10909-022-02909-3en_US
dc.rightsArticle is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use.en_US
dc.sourceSpringer USen_US
dc.titleCUPID: The Next-Generation Neutrinoless Double Beta Decay Experimenten_US
dc.typeArticleen_US
dc.identifier.citationAlfonso, K., Armatol, A., Augier, C., Avignone, F. T., Azzolini, O. et al. 2022. "CUPID: The Next-Generation Neutrinoless Double Beta Decay Experiment."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-06-17T03:22:42Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2023-06-17T03:22:42Z
mit.licensePUBLISHER_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record