MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Quadrature as applied to computer models for robust design: theoretical and empirical assessment

Author(s)
Frey, Daniel D; Lin, Yiben; Heijnen, Petra
Thumbnail
DownloadPublished version (1.189Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
<jats:title>Abstract</jats:title> <jats:p>This paper develops theoretical foundations for extending Gauss–Hermite quadrature to robust design with computer experiments. When the proposed method is applied with <jats:italic>m</jats:italic> noise variables, the method requires 4<jats:italic>m</jats:italic> + 1 function evaluations. For situations in which the polynomial response is separable, this paper proves that the method gives exact transmitted variance if the response is a fourth-order separable polynomial response. It is also proven that the relative error mean and variance of the method decrease with the dimensionality <jats:italic>m</jats:italic> if the response is separable. To further assess the proposed method, a probability model based on the effect hierarchy principle is used to generate sets of polynomial response functions. For typical populations of problems, it is shown that the proposed method has less than 5% error in 90% of cases. Simulations of five engineering systems were developed and, given parametric alternatives within each case study, a total of 12 case studies were conducted. A comparison is made between the cumulative density function for the hierarchical probability models and a corresponding distribution function for case studies. The data from the case-based evaluations are generally consistent with the results from the model-based evaluation.</jats:p>
Date issued
2021
URI
https://hdl.handle.net/1721.1/150937
Department
Massachusetts Institute of Technology. Department of Mechanical Engineering
Journal
Design Science
Publisher
Cambridge University Press (CUP)
Citation
Frey, Daniel D, Lin, Yiben and Heijnen, Petra. 2021. "Quadrature as applied to computer models for robust design: theoretical and empirical assessment." Design Science, 7.
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.