Show simple item record

dc.contributor.authorMorris, Stephen
dc.contributor.authorOyama, Daisuke
dc.contributor.authorTakahashi, Satoru
dc.date.accessioned2023-06-26T17:25:58Z
dc.date.available2023-06-26T17:25:58Z
dc.date.issued2023-06-21
dc.identifier.urihttps://hdl.handle.net/1721.1/150943
dc.description.abstractAbstract We study a strict version of the notion of equilibrium robustness by Kajii and Morris (Econometrica 65:1283–1309, 1997) that allows for a larger class of incomplete information perturbations of a given complete information game, where with high probability, players believe that their payoffs are close to (but may be different from) those of the complete information game. We show that a strict monotone potential maximizer of a complete information game is strictly robust if either the game or the associated strict monotone potential is supermodular, and that the converse also holds in all binary-action supermodular games.en_US
dc.publisherSpringer Nature Singaporeen_US
dc.relation.isversionofhttps://doi.org/10.1007/s42973-023-00136-3en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Nature Singaporeen_US
dc.titleStrict robustness to incomplete informationen_US
dc.typeArticleen_US
dc.identifier.citationMorris, Stephen, Oyama, Daisuke and Takahashi, Satoru. 2023. "Strict robustness to incomplete information."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Economics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-06-25T03:11:13Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-06-25T03:11:13Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record