MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Traversability, Reconfiguration, and Reachability in the Gadget Framework

Author(s)
Ani, Joshua; Demaine, Erik D.; Diomidov, Yevhenii; Hendrickson, Dylan; Lynch, Jayson
Thumbnail
Download453_2023_Article_1140.pdf (1.069Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Consider an agent traversing a graph of “gadgets”, where each gadget has local state that changes with each traversal by the agent according to specified rules. Prior work has studied the computational complexity of deciding whether the agent can reach a specified location, a problem we call reachability. This paper introduces new goals for the agent, aiming to characterize when the computational complexity of these problems is the same or differs from that of reachability. First we characterize the complexity of universal traversal—where the goal is to traverse every gadget at least once—for DAG gadgets (partially), one-state gadgets, and reversible deterministic gadgets. Then we study the complexity of reconfiguration—where the goal is to bring the system of gadgets to a specified state. We prove many cases PSPACE-complete, and show in some cases that reconfiguration is strictly harder than reachability, while in other cases, reachability is strictly harder than reconfiguration.
Date issued
2023-07-05
URI
https://hdl.handle.net/1721.1/151069
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Springer US
Citation
Ani, Joshua, Demaine, Erik D., Diomidov, Yevhenii, Hendrickson, Dylan and Lynch, Jayson. 2023. "Traversability, Reconfiguration, and Reachability in the Gadget Framework."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.