MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Multimodal Spatiotemporal Deep Learning Framework to Predict Response of Breast Cancer to Neoadjuvant Systemic Therapy

Author(s)
Verma, Monu; Abdelrahman, Leila; Collado-Mesa, Fernando; Abdel-Mottaleb, Mohamed
Thumbnail
Downloaddiagnostics-13-02251.pdf (1.121Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Current approaches to breast cancer therapy include neoadjuvant systemic therapy (NST). The efficacy of NST is measured by pathologic complete response (pCR). A patient who attains pCR has significantly enhanced disease-free survival progress. The accurate prediction of pCR in response to a given treatment regimen could increase the likelihood of achieving pCR and prevent toxicities caused by treatments that are not effective. Th early prediction of response to NST can increase the likelihood of survival and help with decisions regarding breast-conserving surgery. An automated NST prediction framework that is able to precisely predict which patient undergoing NST will achieve a pathological complete response (pCR) at an early stage of treatment is needed. Here, we propose an end-to-end efficient multimodal spatiotemporal deep learning framework (deep-NST) framework to predict the outcome of NST prior or at an early stage of treatment. The deep-NST model incorporates imaging data captured at different timestamps of NST regimens, a tumor’s molecular data, and a patient’s demographic data. The efficacy of the proposed work is validated on the publicly available ISPY-1 dataset, in terms of accuracy, area under the curve (AUC), and computational complexity. In addition, seven ablation experiments were carried out to evaluate the impact of each design module in the proposed work. The experimental results show that the proposed framework performs significantly better than other recent methods.
Date issued
2023-07-03
URI
https://hdl.handle.net/1721.1/151112
Department
Massachusetts Institute of Technology. Media Laboratory
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Diagnostics 13 (13): 2251 (2023)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.