Show simple item record

dc.contributor.authorPark, Sang E.
dc.contributor.authorHarris, Philip
dc.contributor.authorOstdiek, Bryan
dc.date.accessioned2023-07-17T12:49:25Z
dc.date.available2023-07-17T12:49:25Z
dc.date.issued2023-07-12
dc.identifier.urihttps://hdl.handle.net/1721.1/151120
dc.description.abstractAbstract In this paper, we present a method of embedding physics data manifolds with metric structure into lower dimensional spaces with simpler metrics, such as Euclidean and Hyperbolic spaces. We then demonstrate that it can be a powerful step in the data analysis pipeline for many applications. Using progressively more realistic simulated collisions at the Large Hadron Collider, we show that this embedding approach learns the underlying latent structure. With the notion of volume in Euclidean spaces, we provide for the first time a viable solution to quantifying the true search capability of model agnostic search algorithms in collider physics (i.e. anomaly detection). Finally, we discuss how the ideas presented in this paper can be employed to solve many practical challenges that require the extraction of physically meaningful representations from information in complex high dimensional datasets.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/JHEP07(2023)108en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleNeural embedding: learning the embedding of the manifold of physics dataen_US
dc.typeArticleen_US
dc.identifier.citationJournal of High Energy Physics. 2023 Jul 12;2023(7):108en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Physics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-07-16T03:11:15Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-07-16T03:11:15Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record