Show simple item record

dc.contributor.authorKrieger, Joachim
dc.contributor.authorLührmann, Jonas
dc.contributor.authorStaffilani, Gigliola
dc.date.accessioned2023-07-18T17:04:03Z
dc.date.available2023-07-18T17:04:03Z
dc.date.issued2023-07-17
dc.identifier.urihttps://hdl.handle.net/1721.1/151134
dc.description.abstractAbstract We establish probabilistic small data global well-posedness of the energy-critical Maxwell–Klein–Gordon equation relative to the Coulomb gauge for scaling super-critical random initial data. The proof relies on an induction on frequency procedure and a modified linear-nonlinear decomposition furnished by a delicate “probabilistic” parametrix construction. This is the first global existence result for a geometric wave equation for random initial data at scaling super-critical regularity.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00205-023-01900-wen_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttps://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleProbabilistic Small Data Global Well-Posedness of the Energy-Critical Maxwell–Klein–Gordon Equationen_US
dc.typeArticleen_US
dc.identifier.citationArchive for Rational Mechanics and Analysis. 2023 Jul 17;247(4):68en_US
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-07-18T03:22:48Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer-Verlag GmbH, DE, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2023-07-18T03:22:48Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record