MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Global optimization via optimal decision trees

Author(s)
Bertsimas, Dimitris; Öztürk, Berk
Thumbnail
Download10898_2023_Article_1311.pdf (2.170Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract The global optimization literature places large emphasis on reducing intractable optimization problems into more tractable structured optimization forms. In order to achieve this goal, many existing methods are restricted to optimization over explicit constraints and objectives that use a subset of possible mathematical primitives. These are limiting in real-world contexts where more general explicit and black box constraints appear. Leveraging the dramatic speed improvements in mixed-integer optimization (MIO) and recent research in machine learning, we propose a new method to learn MIO-compatible approximations of global optimization problems using optimal decision trees with hyperplanes (OCT-Hs). This constraint learning approach only requires a bounded variable domain, and can address both explicit and inexplicit constraints. We solve the MIO approximation to find a near-optimal, near-feasible solution to the global optimization problem. We further improve the solution using a series of projected gradient descent iterations. We test the method on numerical benchmarks from the literature as well as real-world design problems, demonstrating its promise in finding global optima efficiently.
Date issued
2023-07-21
URI
https://hdl.handle.net/1721.1/151167
Department
Sloan School of Management; Massachusetts Institute of Technology. Department of Aeronautics and Astronautics
Publisher
Springer US
Citation
Bertsimas, Dimitris and Öztürk, Berk. 2023. "Global optimization via optimal decision trees."
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.