MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Automation in Interior Space Planning: Utilizing Conditional Generative Adversarial Network Models to Create Furniture Layouts

Author(s)
Tanasra, Hanan; Rott Shaham, Tamar; Michaeli, Tomer; Austern, Guy; Barath, Shany
Thumbnail
Downloadbuildings-13-01793.pdf (5.854Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
In interior space planning, the furnishing stage usually entails manual iterative processes, including meeting design objectives, incorporating professional input, and optimizing design performance. Machine learning has the potential to automate and improve interior design processes while maintaining creativity and quality. The aim of this study was to develop a furnishing method that leverages machine learning as a means for enhancing design processes. A secondary aim was to develop a set of evaluation metrics for assessing the quality of the results generated from such methods, enabling comparisons between the performance of different models. To achieve these aims, floor plans were tagged and assembled into a comprehensive dataset that was then employed for training and evaluating three conditional generative adversarial network models (pix2pix, BicycleGAN, and SPADE) to generate furniture layouts within given room boundaries. Post-processing methods for improving the generated results were also developed. Finally, evaluation criteria that combine measures of architectural design with standard computer vision parameters were devised. Visual architectural analyses of the results confirm that the generated rooms adhere to accepted architectural standards. The numerical results indicate that BicycleGAN outperformed the two other models. Moreover, the overall results demonstrate a machine-learning workflow that can be used to augment existing interior design processes.
Date issued
2023-07-14
URI
https://hdl.handle.net/1721.1/151180
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Buildings 13 (7): 1793 (2023)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.