Show simple item record

dc.contributor.authorJun, Seong-Hwan
dc.contributor.authorNasif, Hassan
dc.contributor.authorJennings-Shaffer, Chris
dc.contributor.authorRich, David H.
dc.contributor.authorKooperberg, Anna
dc.contributor.authorFourment, Mathieu
dc.contributor.authorZhang, Cheng
dc.contributor.authorSuchard, Marc A.
dc.contributor.authorMatsen, Frederick A.
dc.date.accessioned2023-08-16T20:50:11Z
dc.date.available2023-08-16T20:50:11Z
dc.date.issued2023-07-31
dc.identifier.urihttps://hdl.handle.net/1721.1/151771
dc.description.abstractAbstract Bayesian phylogenetics is a computationally challenging inferential problem. Classical methods are based on random-walk Markov chain Monte Carlo (MCMC), where random proposals are made on the tree parameter and the continuous parameters simultaneously. Variational phylogenetics is a promising alternative to MCMC, in which one fits an approximating distribution to the unnormalized phylogenetic posterior. Previous work fit this variational approximation using stochastic gradient descent, which is the canonical way of fitting general variational approximations. However, phylogenetic trees are special structures, giving opportunities for efficient computation. In this paper we describe a new algorithm that directly generalizes the Felsenstein pruning algorithm (a.k.a. sum-product algorithm) to compute a composite-like likelihood by marginalizing out ancestral states and subtrees simultaneously. We show the utility of this algorithm by rapidly making point estimates for branch lengths of a multi-tree phylogenetic model. These estimates accord with a long MCMC run and with estimates obtained using a variational method, but are much faster to obtain. Thus, although generalized pruning does not lead to a variational algorithm as such, we believe that it will form a useful starting point for variational inference.en_US
dc.publisherBioMed Centralen_US
dc.relation.isversionofhttps://doi.org/10.1186/s13015-023-00235-1en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceBioMed Centralen_US
dc.titleA topology-marginal composite likelihood via a generalized phylogenetic pruning algorithmen_US
dc.typeArticleen_US
dc.identifier.citationAlgorithms for Molecular Biology. 2023 Jul 31;18(1):10en_US
dc.contributor.departmentCenter for Brains, Minds, and Machines
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-08-06T03:12:31Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.date.submission2023-08-06T03:12:31Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record