Show simple item record

dc.contributor.authorRoche, Timothy
dc.contributor.authorWood, Aihua
dc.contributor.authorCho, Philip
dc.contributor.authorJohnstone, Chancellor
dc.date.accessioned2023-09-08T19:29:27Z
dc.date.available2023-09-08T19:29:27Z
dc.date.issued2023-08-07
dc.identifier.urihttps://hdl.handle.net/1721.1/152072
dc.description.abstractThis paper concerns the development of a machine learning tool to detect anomalies in the molecular structure of Gallium Arsenide. We employ a combination of a CNN and a PCA reconstruction to create the model, using real images taken with an electron microscope in training and testing. The methodology developed allows for the creation of a defect detection model, without any labeled images of defects being required for training. The model performed well on all tests under the established assumptions, allowing for reliable anomaly detection. To the best of our knowledge, such methods are not currently available in the open literature; thus, this work fills a gap in current capabilities.en_US
dc.publisherMultidisciplinary Digital Publishing Instituteen_US
dc.relation.isversionofhttp://dx.doi.org/10.3390/math11153428en_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceMultidisciplinary Digital Publishing Instituteen_US
dc.titleAnomaly Detection in the Molecular Structure of Gallium Arsenide Using Convolutional Neural Networksen_US
dc.typeArticleen_US
dc.identifier.citationMathematics 11 (15): 3428 (2023)en_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-08-11T14:33:37Z
dspace.date.submission2023-08-11T14:33:37Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record