dc.contributor.author | Li, Baolin | |
dc.contributor.author | Samsi, Siddharth | |
dc.contributor.author | Gadepally, Vijay | |
dc.contributor.author | Tiwari, Devesh | |
dc.date.accessioned | 2023-09-12T16:44:03Z | |
dc.date.available | 2023-09-12T16:44:03Z | |
dc.date.issued | 2023-08-07 | |
dc.identifier.isbn | 979-8-4007-0155-9 | |
dc.identifier.uri | https://hdl.handle.net/1721.1/152103 | |
dc.publisher | ACM|Proceedings of the 32nd International Symposium on High-Performance Parallel and Distributed Computing | en_US |
dc.relation.isversionof | https://doi.org/10.1145/3588195.3592997 | en_US |
dc.rights | Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. | en_US |
dc.source | Association for Computing Machinery | en_US |
dc.title | Kairos: Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous Cloud Resources | en_US |
dc.type | Article | en_US |
dc.identifier.citation | Li, Baolin, Samsi, Siddharth, Gadepally, Vijay and Tiwari, Devesh. 2023. "Kairos: Building Cost-Efficient Machine Learning Inference Systems with Heterogeneous Cloud Resources." | |
dc.contributor.department | Lincoln Laboratory | |
dc.identifier.mitlicense | PUBLISHER_POLICY | |
dc.eprint.version | Final published version | en_US |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | en_US |
eprint.status | http://purl.org/eprint/status/NonPeerReviewed | en_US |
dc.date.updated | 2023-09-01T07:48:03Z | |
dc.language.rfc3066 | en | |
dc.rights.holder | The author(s) | |
dspace.date.submission | 2023-09-01T07:48:04Z | |
mit.license | PUBLISHER_POLICY | |
mit.metadata.status | Authority Work and Publication Information Needed | en_US |