Show simple item record

dc.contributor.authorBertsimas, Dimitris
dc.contributor.authorPawlowski, Colin
dc.date.accessioned2023-09-12T17:26:47Z
dc.date.available2023-09-12T17:26:47Z
dc.date.issued2023-08-07
dc.identifier.urihttps://hdl.handle.net/1721.1/152104
dc.description.abstractAbstract We develop a new model for tensor completion which incorporates noisy side information available on the rows and columns of a 3-dimensional tensor. This method learns a low rank representation of the data along with regression coefficients for the observed noisy features. Given this model, we propose an efficient alternating minimization algorithm to find high-quality solutions that scales to large data sets. Through extensive computational experiments, we demonstrate that this method leads to significant gains in out-of-sample accuracy filling in missing values in both simulated and real-world data. We consider the problem of imputing drug response in three large-scale anti-cancer drug screening data sets: the Genomics of Drug Sensitivity in Cancer (GDSC), the Cancer Cell Line Encyclopedia (CCLE), and the Genentech Cell Line Screening Initiative (GCSI). On imputation tasks with 20% to 80% missing data, we show that the proposed method TensorGenomic matches or outperforms state-of-the-art methods including the original tensor model and a multilevel mixed effects model. With 80% missing data, TensorGenomic improves the $$R^2$$ R 2 from 0.404 to 0.552 in the GDSC data set, 0.407 to 0.524 in the CCLE data set, and 0.331 to 0.453 in the GCSI data set compared to the tensor model which does not take into account genomic side information.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s10994-023-06338-5en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer USen_US
dc.titleTensor completion with noisy side informationen_US
dc.typeArticleen_US
dc.identifier.citationBertsimas, Dimitris and Pawlowski, Colin. 2023. "Tensor completion with noisy side information."
dc.contributor.departmentMassachusetts Institute of Technology. Operations Research Center
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-08-13T03:11:31Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-08-13T03:11:31Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record