Show simple item record

dc.contributor.authorMagee, Michael
dc.contributor.authorThomas, Joe
dc.contributor.authorZhao, Yufei
dc.date.accessioned2023-09-20T18:59:43Z
dc.date.available2023-09-20T18:59:43Z
dc.date.issued2023-07-31
dc.identifier.urihttps://hdl.handle.net/1721.1/152187
dc.description.abstractAbstract A finite group G is called C-quasirandom (by Gowers) if all non-trivial irreducible complex representations of G have dimension at least C. For any unit $$\ell ^{2}$$ ℓ 2 function on a finite group we associate the quantum probability measure on the group given by the absolute value squared of the function. We show that if a group is highly quasirandom, in the above sense, then any Cayley graph of this group has an orthonormal eigenbasis of the adjacency operator such that the quantum probability measures of the eigenfunctions put close to the correct proportion of their mass on suitably selected subsets of the group that are not too small.en_US
dc.publisherSpringer Berlin Heidelbergen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00220-023-04801-xen_US
dc.rightsCreative Commons Attribution 4.0 International licenseen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Berlin Heidelbergen_US
dc.titleQuantum Unique Ergodicity for Cayley Graphs of Quasirandom Groupsen_US
dc.typeArticleen_US
dc.identifier.citationMagee, Michael, Thomas, Joe and Zhao, Yufei. 2023. "Quantum Unique Ergodicity for Cayley Graphs of Quasirandom Groups."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-08-06T03:12:05Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-08-06T03:12:05Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record