MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A spectral metric for collider geometry

Author(s)
Larkoski, Andrew J.; Thaler, Jesse
Thumbnail
Download13130_2023_Article_21556.pdf (1.244Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract By quantifying the distance between two collider events, one can triangulate a metric space and reframe collider data analysis as computational geometry. One popular geometric approach is to first represent events as an energy flow on an idealized celestial sphere and then define the metric in terms of optimal transport in two dimensions. In this paper, we advocate for representing events in terms of a spectral function that encodes pairwise particle angles and products of particle energies, which enables a metric distance defined in terms of one-dimensional optimal transport. This approach has the advantage of automatically incorporating obvious isometries of the data, like rotations about the colliding beam axis. It also facilitates first-principles calculations, since there are simple closed-form expressions for optimal transport in one dimension. Up to isometries and event sets of measure zero, the spectral representation is unique, so the metric on the space of spectral functions is a metric on the space of events. At lowest order in perturbation theory in electron-positron collisions, our metric is simply the summed squared invariant masses of the two event hemispheres. Going to higher orders, we present predictions for the distribution of metric distances between jets in fixed-order and resummed perturbation theory as well as in parton-shower generators. Finally, we speculate on whether the spectral approach could furnish a useful metric on the space of quantum field theories.
Date issued
2023-08-18
URI
https://hdl.handle.net/1721.1/152191
Department
Massachusetts Institute of Technology. Center for Theoretical Physics
Publisher
Springer Berlin Heidelberg
Citation
Journal of High Energy Physics. 2023 Aug 18;2023(8):107
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.