MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

SCA: recovering single-cell heterogeneity through information-based dimensionality reduction

Author(s)
DeMeo, Benjamin; Berger, Bonnie
Thumbnail
Download13059_2023_Article_2998.pdf (3.527Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Dimensionality reduction summarizes the complex transcriptomic landscape of single-cell datasets for downstream analyses. Current approaches favor large cellular populations defined by many genes, at the expense of smaller and more subtly defined populations. Here, we present surprisal component analysis (SCA), a technique that newly leverages the information-theoretic notion of surprisal for dimensionality reduction to promote more meaningful signal extraction. For example, SCA uncovers clinically important cytotoxic T-cell subpopulations that are indistinguishable using existing pipelines. We also demonstrate that SCA substantially improves downstream imputation. SCA’s efficient information-theoretic paradigm has broad applications to the study of complex biological tissues in health and disease.
Date issued
2023-08-25
URI
https://hdl.handle.net/1721.1/152252
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory; Massachusetts Institute of Technology. Department of Mathematics
Publisher
BioMed Central
Citation
Genome Biology. 2023 Aug 25;24(1):195
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.