MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Functions with Positive Differences on Convex Cones

Author(s)
Niculescu, Constantin P.; Sra, Suvrit
Thumbnail
Download25_2023_1987_ReferencePDF.pdf (305.3Kb)
Open Access Policy

Open Access Policy

Creative Commons Attribution-Noncommercial-Share Alike

Terms of use
Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/
Metadata
Show full item record
Abstract
Abstract We analyze the role played by functions with positive differences defined on convex cones. In particular, we study functions that satisfy linear functional inequalities that extend the three-variable Hornich-Hlawka functional inequality, $$f\left( x\right) +f\left( y\right) +f\left( z\right) +f\left( x+y+z\right) \ge f\left( x+y\right) +f\left( y+z\right) +f\left( z+x\right) +f(0),$$ f x + f y + f z + f x + y + z ≥ f x + y + f y + z + f z + x + f ( 0 ) , especially to the case of n variables. Beyond the classical setting, we present extensions to the case of positive operators.
Date issued
2023-08-19
URI
https://hdl.handle.net/1721.1/152262
Department
Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science; Massachusetts Institute of Technology. Institute for Data, Systems, and Society
Publisher
Springer International Publishing
Citation
Results in Mathematics. 2023 Aug 19;78(6):217
Version: Author's final manuscript

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.