Show simple item record

dc.contributor.authorBEZRUKAVNIKOV, ROMAN
dc.contributor.authorDAWYDIAK, STEFAN
dc.contributor.authorDOBROVOLSKA, GALYNA
dc.date.accessioned2023-09-28T21:02:34Z
dc.date.available2023-09-28T21:02:34Z
dc.date.issued2022-12-29
dc.identifier.urihttps://hdl.handle.net/1721.1/152300
dc.description.abstractAbstract According to a conjecture of Lusztig, the asymptotic affine Hecke algebra should admit a description in terms of the Grothedieck group of sheaves on the square of a finite set equivariant under the action of the centralizer of a nilpotent element in the reductive group. A weaker form of this statement, allowing for possible central extensions of stabilizers of that action, has been proved by the first named author with Ostrik. In the present paper, we describe an example showing that nontrivial central extensions do arise, thus the above weaker statement is optimal. We also show that Lusztig's homomorphism from the affine Hecke algebra to the asymptotic affine Hecke algebra induces an isomorphism on cocenters and discuss the relation of the above central extensions to the structure of the cocenter.en_US
dc.publisherSpringer USen_US
dc.relation.isversionofhttps://doi.org/10.1007/s00031-022-09790-0en_US
dc.rightsCreative Commons Attribution-Noncommercial-Share Alikeen_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/en_US
dc.sourceSpringer USen_US
dc.titleOn the structure of the affine asymptotic Hecke algebrasen_US
dc.typeArticleen_US
dc.identifier.citationBEZRUKAVNIKOV, ROMAN, DAWYDIAK, STEFAN and DOBROVOLSKA, GALYNA. 2022. "On the structure of the affine asymptotic Hecke algebras."
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.eprint.versionAuthor's final manuscripten_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-08-25T03:19:47Z
dc.language.rfc3066en
dc.rights.holderThe Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
dspace.embargo.termsY
dspace.date.submission2023-08-25T03:19:47Z
mit.licenseOPEN_ACCESS_POLICY
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record