MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Intra-oral scan segmentation using deep learning

Author(s)
Vinayahalingam, Shankeeth; Kempers, Steven; Schoep, Julian; Hsu, Tzu-Ming H.; Moin, David A.; van Ginneken, Bram; Flügge, Tabea; Hanisch, Marcel; Xi, Tong; ... Show more Show less
Thumbnail
Download12903_2023_Article_3362.pdf (1.913Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract Objective Intra-oral scans and gypsum cast scans (OS) are widely used in orthodontics, prosthetics, implantology, and orthognathic surgery to plan patient-specific treatments, which require teeth segmentations with high accuracy and resolution. Manual teeth segmentation, the gold standard up until now, is time-consuming, tedious, and observer-dependent. This study aims to develop an automated teeth segmentation and labeling system using deep learning. Material and methods As a reference, 1750 OS were manually segmented and labeled. A deep-learning approach based on PointCNN and 3D U-net in combination with a rule-based heuristic algorithm and a combinatorial search algorithm was trained and validated on 1400 OS. Subsequently, the trained algorithm was applied to a test set consisting of 350 OS. The intersection over union (IoU), as a measure of accuracy, was calculated to quantify the degree of similarity between the annotated ground truth and the model predictions. Results The model achieved accurate teeth segmentations with a mean IoU score of 0.915. The FDI labels of the teeth were predicted with a mean accuracy of 0.894. The optical inspection showed excellent position agreements between the automatically and manually segmented teeth components. Minor flaws were mostly seen at the edges. Conclusion The proposed method forms a promising foundation for time-effective and observer-independent teeth segmentation and labeling on intra-oral scans. Clinical significance Deep learning may assist clinicians in virtual treatment planning in orthodontics, prosthetics, implantology, and orthognathic surgery. The impact of using such models in clinical practice should be explored.
Date issued
2023-09-05
URI
https://hdl.handle.net/1721.1/152338
Department
Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Publisher
BioMed Central
Citation
BMC Oral Health. 2023 Sep 05;23(1):643
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.