Stability of Hardy Littlewood Sobolev inequality under bubbling
Author(s)
Aryan, Shrey
Download526_2023_Article_2560.pdf (635.5Kb)
Publisher with Creative Commons License
Publisher with Creative Commons License
Creative Commons Attribution
Terms of use
Metadata
Show full item recordAbstract
Abstract
In this note we will generalize the results deduced in Figalli and Glaudo (Arch Ration Mech Anal 237(1):201–258, 2020) and Deng et al. (Sharp quantitative estimates of Struwe’s Decomposition. Preprint
http://arxiv.org/abs/2103.15360
, 2021) to fractional Sobolev spaces. In particular we will show that for
$$s\in (0,1)$$
s
∈
(
0
,
1
)
,
$$n>2s$$
n
>
2
s
and
$$\nu \in \mathbb {N}$$
ν
∈
N
there exists constants
$$\delta = \delta (n,s,\nu )>0$$
δ
=
δ
(
n
,
s
,
ν
)
>
0
and
$$C=C(n,s,\nu )>0$$
C
=
C
(
n
,
s
,
ν
)
>
0
such that for any function
$$u\in \dot{H}^s(\mathbb {R}^n)$$
u
∈
H
˙
s
(
R
n
)
satisfying,
$$\begin{aligned} \left\| u-\sum _{i=1}^{\nu } \tilde{U}_{i}\right\| _{\dot{H}^s} \le \delta \end{aligned}$$
u
-
∑
i
=
1
ν
U
~
i
H
˙
s
≤
δ
where
$$\tilde{U}_{1}, \tilde{U}_{2},\ldots \tilde{U}_{\nu }$$
U
~
1
,
U
~
2
,
…
U
~
ν
is a
$$\delta $$
δ
-interacting family of Talenti bubbles, there exists a family of Talenti bubbles
$$U_{1}, U_{2},\ldots U_{\nu }$$
U
1
,
U
2
,
…
U
ν
such that
$$\begin{aligned} \left\| u-\sum _{i=1}^{\nu } U_{i}\right\| _{\dot{H}^s} \le C\left\{ \begin{array}{ll} \Gamma &{} \text{ if } 2s< n < 6s,\\ \Gamma |\log \Gamma |^{\frac{1}{2}} &{} \text{ if } n=6s, \\ \Gamma ^{\frac{p}{2}} &{} \text{ if } n > 6s \end{array}\right. \end{aligned}$$
u
-
∑
i
=
1
ν
U
i
H
˙
s
≤
C
Γ
if
2
s
<
n
<
6
s
,
Γ
|
log
Γ
|
1
2
if
n
=
6
s
,
Γ
p
2
if
n
>
6
s
for
$$\Gamma =\left\| \Delta u+u|u|^{p-1}\right\| _{H^{-s}}$$
Γ
=
Δ
u
+
u
|
u
|
p
-
1
H
-
s
and
$$p=2^*-1=\frac{n+2s}{n-2s}.$$
p
=
2
∗
-
1
=
n
+
2
s
n
-
2
s
.
Date issued
2023-09-01Department
Massachusetts Institute of Technology. Department of MathematicsPublisher
Springer Berlin Heidelberg
Citation
Calculus of Variations and Partial Differential Equations. 2023 Sep 01;62(8):223
Version: Final published version