MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Stability of Hardy Littlewood Sobolev inequality under bubbling

Author(s)
Aryan, Shrey
Thumbnail
Download526_2023_Article_2560.pdf (635.5Kb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Abstract In this note we will generalize the results deduced in Figalli and Glaudo (Arch Ration Mech Anal 237(1):201–258, 2020) and Deng et al. (Sharp quantitative estimates of Struwe’s Decomposition. Preprint http://arxiv.org/abs/2103.15360 , 2021) to fractional Sobolev spaces. In particular we will show that for $$s\in (0,1)$$ s ∈ ( 0 , 1 ) , $$n>2s$$ n > 2 s and $$\nu \in \mathbb {N}$$ ν ∈ N there exists constants $$\delta = \delta (n,s,\nu )>0$$ δ = δ ( n , s , ν ) > 0 and $$C=C(n,s,\nu )>0$$ C = C ( n , s , ν ) > 0 such that for any function $$u\in \dot{H}^s(\mathbb {R}^n)$$ u ∈ H ˙ s ( R n ) satisfying, $$\begin{aligned} \left\| u-\sum _{i=1}^{\nu } \tilde{U}_{i}\right\| _{\dot{H}^s} \le \delta \end{aligned}$$ u - ∑ i = 1 ν U ~ i H ˙ s ≤ δ where $$\tilde{U}_{1}, \tilde{U}_{2},\ldots \tilde{U}_{\nu }$$ U ~ 1 , U ~ 2 , … U ~ ν is a $$\delta $$ δ -interacting family of Talenti bubbles, there exists a family of Talenti bubbles $$U_{1}, U_{2},\ldots U_{\nu }$$ U 1 , U 2 , … U ν such that $$\begin{aligned} \left\| u-\sum _{i=1}^{\nu } U_{i}\right\| _{\dot{H}^s} \le C\left\{ \begin{array}{ll} \Gamma &{} \text{ if } 2s< n < 6s,\\ \Gamma |\log \Gamma |^{\frac{1}{2}} &{} \text{ if } n=6s, \\ \Gamma ^{\frac{p}{2}} &{} \text{ if } n > 6s \end{array}\right. \end{aligned}$$ u - ∑ i = 1 ν U i H ˙ s ≤ C Γ if 2 s < n < 6 s , Γ | log Γ | 1 2 if n = 6 s , Γ p 2 if n > 6 s for $$\Gamma =\left\| \Delta u+u|u|^{p-1}\right\| _{H^{-s}}$$ Γ = Δ u + u | u | p - 1 H - s and $$p=2^*-1=\frac{n+2s}{n-2s}.$$ p = 2 ∗ - 1 = n + 2 s n - 2 s .
Date issued
2023-09-01
URI
https://hdl.handle.net/1721.1/152365
Department
Massachusetts Institute of Technology. Department of Mathematics
Publisher
Springer Berlin Heidelberg
Citation
Calculus of Variations and Partial Differential Equations. 2023 Sep 01;62(8):223
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.