Show simple item record

dc.contributor.authorDarrow, David
dc.date.accessioned2023-10-23T18:05:04Z
dc.date.available2023-10-23T18:05:04Z
dc.date.issued2023-10-16
dc.identifier.urihttps://hdl.handle.net/1721.1/152517
dc.description.abstractAbstract Internal DLA (IDLA) is an internal aggregation model in which particles perform random walks from the origin, in turn, and stop upon reaching an unoccupied site. Levine and Peres showed that, when particles start instead from fixed multiple-point distributions, the modified IDLA processes have deterministic scaling limits related to a certain obstacle problem. In this paper, we investigate the convergence rate of this “extended source” IDLA in the plane to its scaling limit. We show that, if $$\delta $$ δ is the lattice size, fluctuations of the IDLA occupied set are at most of order $$\delta ^{3/5}$$ δ 3 / 5 from its scaling limit, with probability at least $$1-e^{-1/\delta ^{2/5}}$$ 1 - e - 1 / δ 2 / 5 .en_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttps://doi.org/10.1007/s11118-023-10102-8en_US
dc.rightsCreative Commons Attributionen_US
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/en_US
dc.sourceSpringer Netherlandsen_US
dc.titleA Convergence Rate for Extended-Source Internal DLA in the Planeen_US
dc.typeArticleen_US
dc.identifier.citationDarrow, David. 2023. "A Convergence Rate for Extended-Source Internal DLA in the Plane." Potential Analysis.
dc.contributor.departmentMassachusetts Institute of Technology. Department of Mathematics
dc.relation.journalPotential Analysisen_US
dc.identifier.mitlicensePUBLISHER_CC
dc.eprint.versionFinal published versionen_US
dc.type.urihttp://purl.org/eprint/type/JournalArticleen_US
eprint.statushttp://purl.org/eprint/status/PeerRevieweden_US
dc.date.updated2023-10-22T03:14:44Z
dc.language.rfc3066en
dc.rights.holderThe Author(s)
dspace.embargo.termsN
dspace.date.submission2023-10-22T03:14:44Z
mit.licensePUBLISHER_CC
mit.metadata.statusAuthority Work and Publication Information Neededen_US


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record