MIT Libraries logoDSpace@MIT

MIT
View Item 
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
  • DSpace@MIT Home
  • MIT Open Access Articles
  • MIT Open Access Articles
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

LSTM for Modeling of Cylinder Pressure in HCCI Engines at Different Intake Temperatures via Time-Series Prediction

Author(s)
Sontheimer, Moritz; Singh, Anshul-Kumar; Verma, Prateek; Chou, Shuo-Yan; Kuo, Yu-Lin
Thumbnail
Downloadmachines-11-00924-v2.pdf (1.215Mb)
Publisher with Creative Commons License

Publisher with Creative Commons License

Creative Commons Attribution

Terms of use
Creative Commons Attribution https://creativecommons.org/licenses/by/4.0/
Metadata
Show full item record
Abstract
Modeling engines using physics-based approaches is a traditional and widely-accepted method for predicting in-cylinder pressure and the start of combustion (SOC). However, developing such intricate models typically demands significant effort, time, and knowledge about the underlying physical processes. In contrast, machine learning techniques have demonstrated their potential for building models that are not only rapidly developed but also efficient. In this study, we employ a machine learning approach to predict the cylinder pressure of a homogeneous charge compression ignition (HCCI) engine. We utilize a long short-term memory (LSTM) based machine learning model and compare its performance against a fully connected neural network model, which has been employed in previous research. The LSTM model’s results are evaluated against experimental data, yielding a mean absolute error of 0.37 and a mean squared error of 0.20. The cylinder pressure prediction is presented as a time series, expanding upon prior work that focused on predicting pressure at discrete points in time. Our findings indicate that the LSTM method can accurately predict the cylinder pressure of HCCI engines up to 256 time steps ahead.
Date issued
2023-09-25
URI
https://hdl.handle.net/1721.1/152529
Department
Program in Media Arts and Sciences (Massachusetts Institute of Technology)
Publisher
Multidisciplinary Digital Publishing Institute
Citation
Machines 11 (10): 924 (2023)
Version: Final published version

Collections
  • MIT Open Access Articles

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsThis CollectionBy Issue DateAuthorsTitlesSubjects

My Account

Login

Statistics

OA StatisticsStatistics by CountryStatistics by Department
MIT Libraries
PrivacyPermissionsAccessibilityContact us
MIT
Content created by the MIT Libraries, CC BY-NC unless otherwise noted. Notify us about copyright concerns.